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The IBM TRECVID 2004 Concept Detection Framework
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Low-level feature-based Models
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Low-level Feature-based Concept Models: Support Vector Machines

SVM Grid
Search
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SVM models for visual and ASR/CC features
For each concept

Avoided early feature fusion due to small number of training samples.

Built multiple models for each feature set by varying kernels and parameters.

27 models for different parameter configurations built for each concept
Validation Set is used to then search for the best model parameters and feature set.
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Multi-granular hypotheses testing

Idea
Using manual annotation, train concept models for regional concepts
At detection time, identify and test the best candidate regions:

– Generate multiple segmentation hypotheses for identifying candidate region set 

– Predict best hypothesis for target concept (e.g., based on performance on independent 
validation set)

– Evaluate concept models over regions corresponding to selected segmentation hypothesis

– Determine final detection confidence score from candidate region scores 

Global Perfect object
segmentation

Color/texture-
based segmentation

Spatial grid
partitioning

Spatial layout
partitioning
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Maximum Entropy Approach for Concept detection w/o 
regional annotation

Key-frame partitioned into regular grid
Low-level features extracted from each region 
Extracted features are tokenized using K-
means.
Statistical information to the Maximum Entropy 
model is presented via specially designed 
predicates:

Unigram predicates are defined to capture the co-
occurrence statistics between manual annotation 
and tokenized feature.

Bigram predicates capture the relationships 
between horizontal and vertical neighboring region.

Place Dependent predicates are defined to capture 
location specific statistics.

Joint Observation predicates are defined to 
capture interactions between the visual low-level 
features.
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Learning Mixture of Part-based Models
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Leveraging Unlabeled Samples

Experimented with leveraging unlabeled data sets TREC2003, 
TREC 2004 in conjunction with the labeled common development 
annotation set.
Experimented with Co-training and a variation of co-training
In each case the unimodal classifier was an SVM
Combination of the multiple modalities and unlabeled and labeled
data sets resulted in cross-feature ensemble models.
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Our Approach: Cross Feature Ensemble Learning 
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Results: Maximal Average Precision in 10 Iterations
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• CFEL has theoretical performance guarantees that Co-training does not. 

• Average improvement: CFEL 12 % CT 4 %, Fully Labeled: 14 %
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Multi-Modality/ Multi-Concept Fusion Methods

Ensemble Fusion: 
• Normalization: rank, Gaussian, linear.
• Combination: average, product, min, max
• Works well for uni-modal concepts with few training examples 
• Computationally low-cost method of combining multiple classifiers.
Maximum Entropy Fusion
•Similar approach as in ME Detection except that now the supervised ME scheme 
uses detection results of different models and learns based on joint predicates
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Post-processing with Context Filters
Bill Clinton-Depth Distribution

Normalized Depth from the Start of the Broadcast

Anchor Detection (Build an anchor 
detector but can also use Indoors 
Detector as a surrogate for Anchor 
Detector)
Removed top 500 anchor shots 
from the top of any list
Modeled the depth of a shot 
reporting a particular concept, 
from the beginning of the 
broadcast. For example Bill 
Clinton appeared closer to the 
beginning of the broadcast, while 
Physical Violence appeared later.
Built non-parametric density 
models for the depth distribution of 
each concept and applied this to 
provide soft filtering of results
Also built similar models for shot 
durations for concepts but not 
conclusive to help filtering
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IBM TRECVID 2004 Concept Detection: Logistics

Submitted runs 
for all 10 
concepts 
All runs were 
multimodal
45 Type A runs
82 Runs in all 
evaluated

Mall_Tall_EF: All models, all sets, Ensemble Fusion

CM2all_T1_EF: All models, Co-training, Ensemble Fusion

CM2all_T1_MEMF: All models, Co-training, ME Fusion
(TREC03 set as unlabeled set)

CM2all_Tall_EF: All models, Co-training, All sets, EF (TREC03 set as 
unlabeled set)

CM4all_Tall_EF: All models, Co-training, All sets, EF (TREC04 set as 
unlabeled set)

Filter1: Mall_T1_EF filtered (w/anchor, depth filtered for 2 concepts)

Filter2: CM2all_Tall_EF filtered (w/anchor, depth filtered for 2
concepts)

Mall_T1_MEMF: All models, ME Fusion

Mall_T1_EF: All models, Ensemble Fusion

BOM: Best combination of single A and V



19

Milind R. Naphade

NIST TRECVID 2004 Workshop: The IBM TRECVID 2004 System © 2002 IBM Corporation

TRECVID 2004: Results at a glance
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• All IBM runs in the top 11 runs based on MAP
• IBM tops AP in 4/10 concepts, tops P@100, P@1000 and P@2000 in 5/10 concepts
• All IBM concept APs above the median concept AP across all runs
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New Directions Explored and Lessons Learnt
CFEL: Improves precision towards 
the top by performing re-ranking. 
Well suited for rare concepts. 
Maximum Entropy Modeling: Works 
well for concepts with large number 
of training samples but does not 
generalize as well on unseen data 
set. Also does not work well as a 
fusion strategy at least for 
infrequent concepts
Feature Selection: Turned out to be 
important for choosing smaller but 
more discriminative features to 
larger complex features that were 
suited for frequent concepts. Layout 
helped in the compressed domain 
feature based models.
Classifier: SVM performed better 
than MaxEnt with or without co-
training.
Filtering improves slightly in P@100 
for Physical Violence. For most 
concepts, there is no significant 
improvement.
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Online Demo

http://mp7.watson.ibm.com
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